# MOF-BAM DATABASE USER INTERFACE - http://mofdb-bam.de/

A quick introduction on how to get started with using the tool

The web version of the MOF-BAM database consists of three sections:

- 1. Search parameters of MOFs
- 2. Search parameters of Organics
- 3. Results
- 4. Exporting



#### MOF Database

#### 1. The search parameters of MOFs are divided in:

**Number of components**: amount of metals (any, 0 - 3), amount of linkers (any, 0 - 3). It allows also including organic molecules that are not linkers, like structure directing agents, charge compensating ions, capping agents, etc., selecting the option "Allow MOFs with Non-Linker organics". Also the instruction "Keep order when searching for Used Organics" (see section XX)

**Search parameters**: The drop-down menu allows to select the search parameter and its value. Included parameters are MOF name, CSD reference code, porous properties like accessible surface area (ASA gravimetric and volumetric), pore volume, density, crystallographic properties, estimated hydrogen total uptake at 77 K and 100 bar, presence of open metal sites (OMS), specific metals, and price of linkers per gram. The total uptakes are estimated from the porous properties by following the procedure reported in https://doi.org/10.1016/j.ijhydene.2020.10.265.

It is possible to add (or delete, if needed) search parameters combining these parameters with the option "Add search parameter". Finally, the button "Reset search parameters" cleans all the search fields, and the button "Search" looks for matches within the database. The results from the search appear in section 3.a.

## 2. The search parameters of Organics

This field allows to look among organic components within MOF structures, even if they are linkers or not. It is possible to look for organics from their name (total name or fragments), CAS number, molar mass, their price  $(\mathbf{\xi}/\mathbf{g})$ , and the presence of specific chemical moieties (including carbonyl, amine, azolates, fluor,...).

## 3. Results

Results are divided for MOFs structures (3.a) and organics (3.b). Both tables can be sorted by any attribute by clicking on the appropriate column header.

<u>3.a</u>: Found MOFs, the interface provides the CSD reference, MOF name (if available), porous and crystalline properties, density, gravimetric hydrogen excess in saturation, gravimetric and volumetric total uptakes at 77 K and 100 bar, metallic and organic composition, and the potential presence or not of OMS. It is also possible to select one or many structures from the results field to export or to select their organic components as a search criteria in 2.

| MOF Name         | ~                     |                  |            |                   |                    |                   | Search      |
|------------------|-----------------------|------------------|------------|-------------------|--------------------|-------------------|-------------|
| OMS?             | ✓ Yes                 |                  |            |                   |                    | ~                 | Remove      |
| Rel. Price [€/g] | ~                     |                  |            | to 26             |                    |                   | Remove      |
|                  |                       | Add search pa    | arameter   | Reset search pa   | rameters           |                   |             |
| Organic by MOF   | • 1249                | Add search pa    | arameter   | Reset search pa   | rameters           |                   | Search      |
| ound MOFs        |                       |                  |            |                   |                    |                   | 630 Results |
| CSD Reference    | Org                   | anic 1           |            |                   | Organic 2          |                   | Organi ^    |
| ABUWOJ           | 1,4-Benzen            | edicarboxylate   |            |                   |                    |                   |             |
| ACIBOE           | 1,3,5-Benzen          | netricarboxylate |            |                   |                    |                   |             |
| ADODAA           | 4-carboxyl            | atopyrazolate    |            |                   |                    |                   |             |
| AFEKAX           | 4,4'-B                | ipyridine        |            |                   |                    |                   |             |
| AGIREP           | 1,3,5-Benzen          | netricarboxylate |            |                   |                    |                   |             |
| AMILOY           | 2,6-Naphtale          | nedicarboxylate  |            |                   |                    |                   |             |
| AMILUE           | 2,6-Naphtale          | nedicarboxylate  |            |                   |                    |                   | -           |
| 4                |                       |                  |            |                   |                    |                   |             |
| Use selected Org | ganics as Organic 1 🗸 | ]                |            |                   |                    | Show used         | Organics    |
| ound Organics    |                       |                  |            |                   |                    |                   | # Results   |
|                  | CAS                   | IUPAC Name       | Alt. Names | Mol. Mass [g/mol] | SMILES (Cambridge) | SMILES (Canonical | l) Linker?  |
|                  |                       |                  |            |                   |                    |                   |             |
|                  |                       |                  |            |                   |                    |                   |             |
|                  |                       |                  |            |                   |                    |                   |             |
|                  |                       |                  |            |                   |                    |                   |             |
|                  |                       |                  |            |                   |                    |                   |             |
|                  |                       |                  |            |                   |                    |                   |             |
|                  |                       |                  |            |                   |                    |                   |             |
|                  | Export selected M     | DEs              |            |                   | Download CS        | / File            |             |
|                  | Export selected Pit   | 013              |            |                   | Download C5        | v ine             |             |

3.b: Found Organics: The organic compounds matching the search parameters in section "2." appear here. For example, cheaper linkers than 10 €/g.

| Rel. Price [€/g] ▼         to 10 |                                        |                                |                   |                                               |                                          |             |  |  |  |  |  |  |  |
|----------------------------------|----------------------------------------|--------------------------------|-------------------|-----------------------------------------------|------------------------------------------|-------------|--|--|--|--|--|--|--|
|                                  |                                        |                                | Add search para   | meter Reset search parameters                 |                                          |             |  |  |  |  |  |  |  |
| Found Organics                   | •                                      | Alt. Names                     | Mol. Mass [g/mol] | SMILES (Cambridge)                            | SMILES (Canonical)                       | 275 Results |  |  |  |  |  |  |  |
| 99-32-1                          | 4-                                     | Oxo-4H-pyran-2,6-dicarboxylate | 184.1             | 0=C1C=C(0C(=C1)C(=0)0)C(=0)0                  | OC(=0)cloc(cc(=0)cl)C(=0)0               | Yes         |  |  |  |  |  |  |  |
| 99-31-0                          |                                        | 5-amineisophthalate            | 181.15            | NC=1C=C(C=C(C(=0)0)C1)C(=0)0                  | Nclcc(cc(c1)C(=0)0)C(=0)0                | Yes         |  |  |  |  |  |  |  |
| 99-05-8                          |                                        | 3-aminebenzoate                | 137.14            | NC=1C=C(C(=0)0)C=CC1                          | Nclcccc(cl)C(=0)0                        | Yes         |  |  |  |  |  |  |  |
| 98-97-5                          |                                        | pyrazine-2-carboxylate         | 124.1             | N1=C(C=NC=C1)C(=O)O                           | OC(=O)cloncen1                           | Yes         |  |  |  |  |  |  |  |
| 96404-79-4                       |                                        | 2-formyltriphenylene           | 256.3             | C(=0)C1=CC=2C3=CC=CC=C3C3=CC=C3C2C=C1         | C(=0)C1=CC=2C3=CC=CC=C3C3=CC=CC=C3C2C=C1 | No          |  |  |  |  |  |  |  |
| 96404-79-4                       |                                        | triphenylene-2-carbaldehyde    | 256.3             | C1=C(C=CC=2C3=CC=CC=C3C3=CC=CC=C3C12)C=O      | 0=Cc1ccc2c(c1)c1ccccc1c1c2cccc1          | No          |  |  |  |  |  |  |  |
| 4                                | ·                                      |                                | 336.34            | et alter en plet alare erler en plet alare er |                                          | U *         |  |  |  |  |  |  |  |
|                                  | Export selected MDFs Download CSV File |                                |                   |                                               |                                          |             |  |  |  |  |  |  |  |

#### 4. Exporting

Exportation buttons allow to export the MOF structures results into a csv file. After the selection is made (Selecting no MOFs will automatically result in all results in the MOF table to be exported), it is necessary to click on "Export selected MOFs". This will generate a file containing the information on both the selected MOFs and the organics associated with them. Once the file is ready the "Download CSV File" button will turn clickable and upon its use the generated file will be downloaded. The file contains the following fields:

**Identifiers of the structure**: csd\_ref, name, as identifiers of the structure.

Porous properties: asa\_grav [m<sup>2</sup>/g], asa\_vol [m<sup>2</sup>/cm<sup>3</sup>], av\_vf, pore\_volume [cm<sup>3</sup>/g],

## density [g/cm<sup>3</sup>]

Hydrogen uptake: nexc [wt. %], uptake\_grav [wt. %], uptake\_vol [g H2/L],

**Composition**: metal1, metal2, metal3, cas1, norm\_name1, name1, mol\_mass1 [g/mol], smile\_cam1, smile\_can1, linker1, vendor\_name1, max\_amount1 [g], rel\_price1 [€/g], min\_purity1, cas2, norm\_name2, name2, mol\_mass2 [g/mol], smile\_cam2, smile\_can2, linker2, vendor\_name2, max\_amount2 [g], rel\_price2 [€/g], min\_purity2, cas3, norm\_name3, name3, mol\_mass3 [g/mol], smile\_cam3, smile\_can3, linker3, vendor\_name3, max\_amount3 [g], rel\_price3 [€/g], min\_purity3

**Structural/crystalline parameters**: oms, lcd [Å...], pld [Å ...], LFPD [Å ...], symmetry\_space\_group, cell\_length\_a, cell\_length\_b, cell\_length\_c, cell\_angle\_alpha, cell\_angle\_beta, cell\_angle\_gamma, cell\_volume [Å<sup>3</sup>].

#### Example 1:

We want to search structures using the same linkers than material PCN-250. In the Structure search fields (1.), select "MOF Name", and type "PCN-250", then click on "Search".

| Collapse Parameter Section                                            |                                              |        |  |  |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------|----------------------------------------------|--------|--|--|--|--|--|--|--|--|--|--|--|
| Amount of Metals: Any v to 0 v<br>Allow MOFs with Non-Linker Organics | Amount of Linkers: Any 💙 to 1 💙              |        |  |  |  |  |  |  |  |  |  |  |  |
| MOF Name   PCN-250                                                    | Add search parameter Reset search parameters | Search |  |  |  |  |  |  |  |  |  |  |  |
| Organic Name 🗸                                                        | Add search parameter Reset search parameters | Search |  |  |  |  |  |  |  |  |  |  |  |

| Found MOFs    |          |            |              |       | -                   |                 |              | -              | 1 Results    |
|---------------|----------|------------|--------------|-------|---------------------|-----------------|--------------|----------------|--------------|
| CSD Reference | Name     | ASA [m²/g] | ASA [m²/cm³] | AV_VF | Pore Volume [cm³/g] | Density [g/cm³] | nexc [wt. %] | Uptake [wt. %] | Uptake [g H2 |
| TOWPEC        | PCN-250' | 1671.76    | 1486.62      | 0.68  | 0.76                | 0.89            | 3.42         | 4.73           | 44.16        |
|               |          |            |              |       |                     |                 |              |                |              |
|               |          |            |              |       |                     |                 |              |                |              |
|               |          |            |              |       |                     |                 |              |                |              |
|               |          |            |              |       |                     |                 |              |                |              |
|               |          |            |              |       |                     |                 |              |                |              |
| 4             |          |            |              |       |                     |                 |              |                |              |
| 4             |          |            |              |       |                     |                 |              |                | •            |

Now, select the structure with left click over it in the results field "3.a" and then, click on "Show Used organics". An internal ID, assigned to this linker, will appear in the search field "2." labeled as "Organic by MOF". Click on "Search" button, and the information about this linker appears in the results box "3.b". It is possible to check the information about a linker by double-clicking anywhere on its row in the results field. Clicking anywhere next to the opened information panel will close it again.



Now, reset search parameters in the structure search (1.), and click on "Use selected organic as" after selecting the position "Organic 1" in the drop-down menu rightwards. If the option "keep order when searching for Used Organics" is not selected in the field "1.", then structures where the linker is in position 2 or 3 (if any) would also be displayed.

|                                                                       | Collapse P           | arameter Section                |            |
|-----------------------------------------------------------------------|----------------------|---------------------------------|------------|
| Amount of Metals: Any v to 0 v<br>Allow MOFs with Non-Linker Organics |                      | Amount of Linkers: Any v to 1 v |            |
| Organic 1 🗸 496                                                       | Add search parameter | Reset search parameters         | Search     |
| Organic by MOF 🗸 1716                                                 | Add search parameter | Reset search parameters         | Search     |
|                                                                       |                      |                                 |            |
| Saved MOS                                                             |                      |                                 | Dr. Develo |

| Found MOFs    |               |            |                                        |       |                     |                 |              | 2              | 1 Result |
|---------------|---------------|------------|----------------------------------------|-------|---------------------|-----------------|--------------|----------------|----------|
| CSD Reference | Name 🔻        | ASA [m²/g] | ASA [m <sup>2</sup> /cm <sup>3</sup> ] | AV_VF | Pore Volume [cm³/g] | Density [g/cm³] | nexc [wt. %] | Uptake [wt. %] | Upta 🔺   |
| TOWPEC        | PCN-250'      | 1671.76    | 1486.62                                | 0.68  | 0.76                | 0.89            | 3.42         | 4.73           |          |
| OFODET        | JUC-64        | 1161.73    | 1340.43                                | 0.52  | 0.45                | 1.15            | 2.75         | 3.36           |          |
| UBIBUF        | FJI-9         | 3087.55    | 2339.26                                | 0.75  | 0.98                | 0.76            | 5.21         | 6.62           |          |
| DAPHOU        | FJI-8         | 3056.76    | 2401.47                                | 0.74  | 0.94                | 0.79            | 5.18         | 6.48           |          |
| VALXOY        | CPM-200-V/Mg  | 1910.51    | 1484.63                                | 0.68  | 0.88                | 0.78            | 3.73         | 5.29           |          |
| VALXIS        | CPM-200-In/Ni | 1671.71    | 1485.32                                | 0.69  | 0.78                | 0.89            | 3.42         | 4.79           |          |
| VALXEO        | CPM-200-In/Mn | 1802.51    | 1503.01                                | 0.68  | 0.82                | 0.83            | 3.59         | 5.02           |          |
|               |               |            |                                        |       |                     |                 |              |                | - F      |

The structure DACYUE uses a mixture of linkers. By clicking on it and on "Show used Organics", it would include this organic compound in the results field "3.b". First, we need to Reset search parameters on fields "1." and "2.".

| Amount of Met                                                               | Imount of Metals:       Any       to       Imount of Linkers:       Any       to       Imount of Linkers:       Any       to       Imount of Linkers:       I |         |         |         |      |                                                             |                                 |                                 |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|------|-------------------------------------------------------------|---------------------------------|---------------------------------|--|--|--|--|--|--|--|
| Organic 1                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ~       | 767     |         | A    | dd search parameter Reset sear                              | ch parameters                   | Search                          |  |  |  |  |  |  |  |
| Orace in her M                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 700     |         |      |                                                             |                                 |                                 |  |  |  |  |  |  |  |
| Organic by MOF     Y       Add search parameter     Reset search parameters |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |         |         |      |                                                             |                                 |                                 |  |  |  |  |  |  |  |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |         |         |      |                                                             |                                 |                                 |  |  |  |  |  |  |  |
| Found MOFs                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |         |         |      |                                                             |                                 | 6 Results                       |  |  |  |  |  |  |  |
| CSD Reference                                                               | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Metal 1 | Metal 2 | Metal 3 | OMS? | Organic 1                                                   | Organic 2 v                     | Organic 3                       |  |  |  |  |  |  |  |
| DACYUE                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mg      |         |         | Yes  | 3,3',5,5'-Azobenzenetetracarboxylate                        | 1,3-dimethylimidazoleidin-2-one |                                 |  |  |  |  |  |  |  |
| DADLOM                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mn      |         |         | Yes  | 4',4'',4'''-Nitrilotribiphenyl-4-carboxylate                | 1,3-dimethylimidazoleidin-2-one |                                 |  |  |  |  |  |  |  |
| REGRIG                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Zn      |         |         | Yes  | 1,3,5-Benzenetricarboxylate 1,3-dimethylimidazoleidin-2-one |                                 |                                 |  |  |  |  |  |  |  |
| ROCZIU                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cd      |         |         | Yes  | pyridine-4-carboxamide 1,3-dimethylimidazoleidin-2-one      |                                 |                                 |  |  |  |  |  |  |  |
| RODBAP                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cd      |         |         | Yes  | 5-(4-pyridyl)tetrazol                                       | 1,3-dimethylimidazoleidin-2-one |                                 |  |  |  |  |  |  |  |
| UJUPUM                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Zn      |         |         | Yes  | 5-Methyltetrazole                                           | oxalonitrile                    | 1,3-dimethylimidazoleidin-2-one |  |  |  |  |  |  |  |

#### Example 2:

Now, let us search for MOF structures with higher volumetric area than 2,000 m<sup>2</sup>/cm<sup>3</sup>, with OMS, and using a cheaper linker than  $1 \notin$ /g. The interface gives 164 MOF structures fulfilling this criteria.

# **MOF Database**

|                |                                                                                     |                                                                                                                                                                                          |         | Collapse Paran            | neter Section    |           |                |             |            |  |  |  |  |  |
|----------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------|------------------|-----------|----------------|-------------|------------|--|--|--|--|--|
| Amount of Met  | tals: 1                                                                             | ✓ to 2 ✓                                                                                                                                                                                 | •       | A                         | Amount of Linker | s: 1 🗸    | to 2 🗸         |             |            |  |  |  |  |  |
| Allow MOFs     | v MOFs with Non-Linker Organics                                                     |                                                                                                                                                                                          |         |                           |                  |           |                |             |            |  |  |  |  |  |
|                |                                                                                     |                                                                                                                                                                                          |         |                           |                  |           |                |             |            |  |  |  |  |  |
| ASA [m²/cm3    | s] <b>v</b>                                                                         | 2000                                                                                                                                                                                     |         |                           | to               |           |                |             | Search     |  |  |  |  |  |
| OMS?           | ✓         Yes         ✓         Re           £/a]         ✓         to 1         Re |                                                                                                                                                                                          |         |                           |                  |           |                |             |            |  |  |  |  |  |
| Rel. Price [€/ | Add search parameter Reset search parameters                                        |                                                                                                                                                                                          |         |                           |                  |           |                |             |            |  |  |  |  |  |
|                | Add search parameter Reset search parameters                                        |                                                                                                                                                                                          |         |                           |                  |           |                |             |            |  |  |  |  |  |
|                |                                                                                     |                                                                                                                                                                                          |         |                           |                  |           |                |             |            |  |  |  |  |  |
| Organic Nam    | e 🗸                                                                                 |                                                                                                                                                                                          |         |                           |                  |           |                |             | Search     |  |  |  |  |  |
|                | Add search parameter Reset search parameters                                        |                                                                                                                                                                                          |         |                           |                  |           |                |             |            |  |  |  |  |  |
|                |                                                                                     |                                                                                                                                                                                          |         |                           |                  |           |                |             |            |  |  |  |  |  |
| Found MOFs     |                                                                                     |                                                                                                                                                                                          |         |                           |                  |           |                | 16          | 54 Results |  |  |  |  |  |
| CSD Reference  | ASA [m²/g]                                                                          | A [m <sup>2</sup> /g] ASA [m <sup>2</sup> /cm <sup>3</sup> ] AV_VF Pore Volume [cm <sup>3</sup> /g] Density [g/cm <sup>3</sup> ] nexc [wt. %] Uptake [wt. %] Uptake [g H <sub>2</sub> /L |         |                           |                  |           |                |             |            |  |  |  |  |  |
| ACIBOE         | 1873.86                                                                             | 2063.01                                                                                                                                                                                  | 0.66    | 0.6                       | 1.1              | 3.68      | 4.46           | 51.42       |            |  |  |  |  |  |
| AGIREP         | 2253.69                                                                             | 2250.02                                                                                                                                                                                  | 0.69    | 0.69                      | 1.0              | 4.16      | 5.07           | 53.29       |            |  |  |  |  |  |
| ARADEE         | 2211.32                                                                             | 2613.25                                                                                                                                                                                  | 0.65    | 0.55                      | 1.18             | 4.11      | 4.77           | 59.24       |            |  |  |  |  |  |
| ATAFIK         | 1722.65                                                                             | 2093.15                                                                                                                                                                                  | 0.64    | 0.53                      | 1.22             | 3.48      | 4.13           | 52.35       |            |  |  |  |  |  |
| BABREE         | 2623.96                                                                             | 2356.63                                                                                                                                                                                  | 0.68    | 0.76                      | 0.9              | 4.63      | 5.6            | 53.28       |            |  |  |  |  |  |
| BODPAN         | 2370.57                                                                             | 2105.25                                                                                                                                                                                  | 0.72    | 0.82                      | 0.89             | 4.31      | 5.54           | 52.07       |            |  |  |  |  |  |
| BUKMUO         | 3400.71                                                                             | 2895.4                                                                                                                                                                                   | 0.71    | 0.83                      | 0.85             | 5.6       | 6.57           | 59.87       |            |  |  |  |  |  |
| Use selected   | Organics as                                                                         | Organic 1 🗸                                                                                                                                                                              |         |                           |                  |           |                | Show used O | rganics    |  |  |  |  |  |
|                |                                                                                     |                                                                                                                                                                                          |         |                           |                  |           |                |             | <u> </u>   |  |  |  |  |  |
| CAS v          |                                                                                     |                                                                                                                                                                                          |         | Alt. Names                |                  | Mol. Mass | s [g/mol]      | 27          | 5 Results  |  |  |  |  |  |
| 99-32-1        |                                                                                     |                                                                                                                                                                                          | 4-0xo-4 | H-pyran-2,6-dicarboxylate | 2                | 18        | 4.1            | 0           | =C1C       |  |  |  |  |  |
| 99-31-0        |                                                                                     |                                                                                                                                                                                          | 5       | amineisophthalate         |                  | 181       | .15            | N           | C=1C       |  |  |  |  |  |
| 99-05-8        |                                                                                     |                                                                                                                                                                                          |         | 3-aminebenzoate           |                  | 137       | .14            |             | NC         |  |  |  |  |  |
| 98-97-5        |                                                                                     |                                                                                                                                                                                          | руг     | azine-2-carboxylate       |                  | 12        | 4.1            |             | N          |  |  |  |  |  |
| 96404-79-4     |                                                                                     |                                                                                                                                                                                          | 2-      | formyltriphenylene        |                  | 25        | 6.3            | C(=0)C1=0   | CC=2       |  |  |  |  |  |
| 96404-79-4     |                                                                                     |                                                                                                                                                                                          | triphe  | nylene-2-carbaldehyde     |                  | 25        | 6.3            | C1=C(C=C    | C=2C       |  |  |  |  |  |
| 964-68-1       |                                                                                     | Be                                                                                                                                                                                       | nzophen | ene-para,para-dicarboxyla | ate              | 270       | .24            | C(=0)(C =0  | C=C(       |  |  |  |  |  |
|                | Fx                                                                                  | port selected M                                                                                                                                                                          | OFs     |                           |                  | Dowr      | nload CSV File |             |            |  |  |  |  |  |
|                | LA                                                                                  | port bereeted i                                                                                                                                                                          |         |                           | L                | 2011      |                |             |            |  |  |  |  |  |

To export this data, click first on "Export Selected MOFs", and then on "Download CSD File". It will generate a .csv file using comma as data delimiters. In some regions importing this file in other programs like EXCEL may require the user to set the appropriate delimiter for the columns to be displayed properly (for EXCEL

# see <u>https://support.microsoft.com/en-us/office/import-or-export-text-txt-or-csv-files-5250ac4c-663c-47ce-937b-339e391393ba</u>).

After separating the fields, the selection looks like this:

|                   | 0        | D         |         | F           | 0 0        | 6 J G      | 1        | JK           | 1.     | ##        | NO        |           | 0 0             |             | T          | U          | Y          |          | X Y Z                              | AA AD                               | AC AD                            | AE AF                            | AG        | AR           | A A         | AK          | AL AM             | AN      | AD AD          | AP AD           | AR        | AL .     | AT         | AU K        | N AW      |
|-------------------|----------|-----------|---------|-------------|------------|------------|----------|--------------|--------|-----------|-----------|-----------|-----------------|-------------|------------|------------|------------|----------|------------------------------------|-------------------------------------|----------------------------------|----------------------------------|-----------|--------------|-------------|-------------|-------------------|---------|----------------|-----------------|-----------|----------|------------|-------------|-----------|
| 1 cad rel name    | 414 98.4 | ara_vol a | v_vi pr | pre_voi der | aits ( nes | c fut, upt | ake i up | Aake i metal | metal2 | metal3 on | a led[A.] | p46[A.] I | FPO(2 symmetric | cell_leng c | ell_leng o | ell leng o | el_ang cel | Lang cel | Lang cell voli carl                | norm_n/name1                        | mol_ma_smile_c                   | is sende_ci bekert               | Vendor_ r | nas_arti rel | price min_p | uri cas2    | norm_ni name      | 2 mol_  | ma smile_ci st | nile_o. linker2 | vendor_ r | mag_am r | el_price m | n puri cast | 3 horm_ni |
| 2 KOZNY           | 1904.6   | 2076.2    | 0.63    | 9.61        | 105        | 3.82       | 4.59     | 50.36 Zh     |        | Ye        | s 6.57    | 5.25      | 6.52 P28o       | 15.22       | 9.85       | 10.27      | 90 1       | 02.04    | 90 2679.1 100-25                   | 0 14-Benz ["Benze                   | <ul> <li>N6.10 C1 +CC</li> </ul> | - OCI+Ok Yes                     | AmBrei    | 1000 0       | 0215 0.1    | 15.64-10-6  | Formate ['Yorr    | 541 45  | 103 CI+O(O C   | +OIO Yes        | AllaAes   | 2500     | 0.0192     | 0.95        |           |
| 5 12UUUL          | 2254.4   | 2447.8    | 0.67    | 0.62        | 109        | 4.57       | 4.95     | 59.00 Zn     | Sn     | Ye        | 8.09      | 5.66      | 8.00 P4/mbm     | 22.9        | 22.9       | 9.25       | 90         | 90       | 90 4098.7                          |                                     |                                  |                                  |           |              |             | 64-19-6     | Formate ['Yonr    | 541 46  | 103 CI+O(O C   | +0)0 Yes        | Allahaz   | 2500     | 0.0182     | 0.95        |           |
| 4 APJADEE         | 228.3    | 2613.3    | 0.65    | 0.55        | 1.10       | 4.0        | 4.77     | 59.24 Cd     |        | Ve<br>Ve  | s 5.90    | 5.29      | 5.90 C2A        | 21.79       | 11.63      | 13.51      | 90         | 93.82    | 90 4087.6 554-95                   | -C 125-Ber ["125-9                  | 1 210.14 Ct(+CC                  | OCI+OX Yes                       | AmBrei    | 1000 0.      | 0909 0.1    | 90 95-94-7  | benzotti ["L2.1   | 44 10   | 3.94 NINENCC   | ScCc2x Yes      | BLD Ph    | 1000     | 0.123      | 0.99        |           |
| \$ ZAPLOV         | 2548.5   | 2258.4    | 0.65    | 0.61        | 105        | 4.03       | 4.77     | 62.61 Zn     |        | Ye        | s 759     | 4.25      | 7.53 Prom       | 23.94       | 27.32      | 22.59      | 90         | 90       | 90 14291 554-95                    | -C 13,5-Ber ["13,5-ti               | 1 210.14 C11+CC                  | ( OCI+O) Yes                     | AmBrec    | 1000 0.      | 0999 0.1    | 93 95-94-7  | benzotri ["#44    | eci 111 | 9.14 NIN-NC of | occ2ci Yes      | BLDPh     | 1000     | 6.123      | 0.99        |           |
| 6 FORDAM          | 2717.2   | 261       | 0.73    | 0.92        | 0.9        | 4.75       | 6.0      | 5191 Zh      |        | Ye        | r 18.97   | 6.01      | 18.91 Fm-3m     | 39.97       | 38.93      | 29.93      | 90         | 90       | 90 62669 121-95                    | bergene ["13-Ee                     | NE.14 CII+CO                     | OCI+OX Yes                       | AFFERES   | 5000         | 0.098 0.1   | 99 200-57-1 | 14-01220 ["[4-    | 531 15  | ES MECCAC      | ICN2C Yes       | TCIChe    | 500      | 0.125      | 0.98        |           |
| P HVSAI DMOF      | 1126.3   | 2005.4    | 0.65    | 0.5         | 100        | 3.75       | 451      | 5114 Zh      |        | Ye        | 8.01      | 5.43      | 7.95 H/mom      | 15.06       | 15.06      | 19.24      | 90         | 90       | 90 4365 900-25                     | 0 (4-Elenz ["Elenza                 | HED CUCC                         | OCI+OX Yes                       | AmBrei    | 1000 0       | 0275 0.1    | 95 250-57-5 | 14-diaza ["[4-    | 141 15  | E2 NECCK C     | KINDC Yes       | TCIChe    | 500      | 0.525      | 0.90        |           |
| B VOPINELOP       | 2207.0   | 2008.7    | 0.67    | 0.71        | 0.99       | 100        | 0.00     | bund an      |        |           | 8 8.10    |           | eter Linem      | 1.10        | 91.01      | 3.0        | - 22       |          | 30 23007 00-25                     | o 74-Deut I. Deute                  | ALL CHUCK                        | COLLOG THE                       | Ambres    | 1010 0       | 0275 0.     | 10 200-01-1 | Le-mara   Le-     | <u></u> | E2 NULLING     | R. PECL, YPE    | TUICHE    | 000      | 0.025      | 0.00        |           |
| IN WAFFING        | 2340.3   | 2017.6    | 0.66    | 0.72        | 0.95       | 1.04       | 4.00     | 50.35 Eh     |        | 10        | 5 0.00    | 7.04      | 2.00 Permon     | 12.06       | 12.05      | 847        |            |          | 90 4367 000-25<br>90 2228 4 100-25 | 14-Denz [ Denze                     | HED CH-CC                        | DOLLON Ves                       | AmBrec    | 1000 0       | 0210 0.1    | PS 200-57-5 | Le-chapp ( Le-    | NAC 15  | E2 NECCH C     | CAUC Yes        | TOUChe    | 500      | 6 104      | 0.99        |           |
| # WADEAVOA        | 1042-2   | 2078.8    | 0.64    | 0.50        | 100        | 3.73       | 4.47     | 60.0 70      |        |           | 745       | 6.14      | 7 05 DAlese     | 14.90       | 14.00      | 45.2       |            | - 40     | 50 4500 E 100-11                   | 14 East CEast                       | NED CH-CC                        | OCI-ON Ves                       | AmBen     | 2010 0       | 018 01      | 10 250 57.0 | 14-diate Pla-     |         | IS A MADOCK C  | Carlos Ver      | TOChe     | 500      | 0.005      | 0.94        |           |
| IE VAREAVIS       | 1975.1   | 2025.4    | 0.65    | 0.65        | 106        | 3.85       | 4.50     | \$107 Zn     |        | Ye.       | 7.96      | 5.43      | 7.05 M/mcm      | 16.02       | 15.00      | 19.24      | 90         |          | 90 43451 100-25                    | 14-Benz C'Elenze                    | NED CHICK                        | DCI+OX Yes                       | Artillee  | 1010 0       | 6275 0.1    | 18 280.67.5 | 14-diara C'14-    | lar II  | 2 MOCCA C      | TACK Yes        | TCIChe    | 500      | 0.126      | 0.90        |           |
| 13 VAREAVOS       | 1200     | 2112.5    | 0.65    | 0.62        | 106        | 3.64       | 4.62     | 6130 20      |        | Ye.       | 8.62      | 5.51      | 0.02 M/mcm      | 15.06       | 15.06      | 19.75      | 90         | 90       | 90 4368.2 100.25                   | 1 14-Bent C'Bente                   | NE12 CH-CC                       | OCI+ON Ver                       | Amilian   | 1010 0       | 0775 01     | 15 200.57.5 | 14-diata f"14-    | 141 18  | 2.2 MICCA C    | CADC Yes        | TCIChe    | 500      | 0.026      | 0.98        |           |
| H OMOVE TIMOF     | 1016.1   | 2048.3    | 0.62    | 0.55        | 1.10       | 3.6        | 4.27     | 50.35 Zn     |        | Ye        | 6 6.41    | 4.66      | 6.41 1-424      | \$8.76      | 18.76      | 10         | 90         | 90       | 90 6334.5 4282-3                   | 5- Thiophe ("2.5-mi                 | 172.16 SICI+C                    | COCI+Ob Yes                      | AmBeel    | 1000 0       | 2393 0.1    | 97.288-36-6 | 12.3-tria ["trial | 04 63   | 07 NIN-NC of   | unefek Yes      | BLDPh     | 500      | 0.6846     | 0.98        |           |
| 15 HOVPU JUC-66   | 21011    | 20416     | 0.65    | 0.67        | 0.97       | 2.97       | 4.87     | 49.75 Zn     |        | Ye        | 7.90      | 5.40      | 7.91 P21212     | 13.82       | 2164       | \$2.53     | 90         | 90       | 90 3630.2 490-5                    | 5.34 Puris (*3.4-Pu                 | # 107.12 NI+CC                   | a OCI+Ok Yes                     | Chemen    | 1000 0.      | 0053 01     | 100-97-0    | 12574# [*125      | 7. 140  | 22 CINICK C    | ROCK Yes        | Allahox   | 5000     | 0.0142     | 0.99        |           |
| 16 CUOFILO        | 2219.3   | 2398.9    | 0.64    | 0.64        | 0.99       | 4.12       | 4.89     | 60.76 Zn     |        | Ye        | 5 5.87    | 4.6       | 5.82 C2/o       | 38.03       | 9.65       | 9.87       | 90         | 97.49    | 90 2590.3 103-35                   | 2 4.4'-ethe ["4.4'-et               | \$ 268.27 C(+CC                  | - OCI+Ox Yes                     | ELD Ph.   | 500 0.       | 5968 0.1    | 95 288-88-6 | 12,4-114 ("12,4   | 41 68   | 106 NIN-Ch of  | non(nii Yes     | Carbory   | 10000    | 0.0102     |             |           |
| 17 NIMQAD         | 3578.6   | 20517     | 0.77    | 1.10        | 0.65       | 5.33       | 7.24     | 5114 Cu      |        | Ye        | 18.6      | 6.65      | 11.6 Fm-3m      | 40.09       | 40.09      | 40.09      | 90         | 90       | 90 64446 618-83                    | 7 5-Hydroi (*6-Hyd                  | 112.14 OC+1C                     | · Ocloc(o-Yes                    | ELD Ph    | 510 0        | 1058 0.1    | 98 290-37-5 | Paradra ['Par     | ale 80  | 109 NI=CC+ nt  | oonoo' Yes      | AK5d      | 100      | 0.5048     |             |           |
| N JORVET          | 2395.6   | 2012.3    | 0.66    | 0.79        | 0.84       | 4.54       | 5.48     | 49.67 2n     |        | Ye        | s 10.62   | 4.73      | 10.82 C2/c      | 40.43       | 18.12      | 25.35      | 90 t       | 23.89    | 90 21456 530-85                    | 8 4,4'-metl ["4,4'-m                | < 388.39 C(Ct+C                  | ( OC(=O): Yes                    | AmBeel    | 500 0.       | 2546 0.1    | 99 1455-77- | 0,5-diam (*3,5-   | Ša 99   | 9.12 NCI-NIT N | CtsNff Yes      | BLD Ph.   | 500      | 0.42       | 0.90        |           |
| 19 IVENEA         | 3474.9   | 2003      | 0.82    | 1.4         | 0.59       | 5.7        | 0.09     | 61,47 Ou     |        | Ye        | 8 22.61   | 7.45      | 22.6 Fm-3m      | 46.95       | 46.15      | 46.35      | (H)        | 90       | 90 98291 653-26                    | 444'-Bpg["44'-B                     | 116.10 NI+CC                     | <ul> <li>nloostoc Yes</li> </ul> | Chemes    | 1000         | 0.276       | 1 99-39-0   | 6-amino (16-ar    | nin 301 | 1.15 NC+1C+ N  | olooje+Yes      | Carbozy   | 10000    | 0.0613     |             |           |
| 20 FAVEALML-88    | 2209.4   | 2445.2    | 0.65    | 0.59        | 109        | 4.15       | 4.06     | 05.73 Fe     |        | Ye        | 4 6.89    | 5.1       | 6.09 P-62o      | 11.50       | 11.10      | 14.59      | 90         | 90       | 120 1580.6 190-17-                 | Fumaratic ["Tumar                   | 1 1H.00 C(VC+C                   | a OCI+OV Yes                     | AmBeel    | 1000 0.      | 0096 0.1    | 99          |                   |         |                |                 |           |          |            |             |           |
| at PEZKE          | 2893.9   | 2365.9    | 0.71    | 0.87        | 0.82       | 4.97       | 6.85     | 63.57 Fe     |        | Ye        | I 862     | 8.1       | 8.82 P-620      | 12.97       | 12.87      | 12.68      | 90         | 90       | 120 2110 110-17-1                  | E fumaratic ("Tumar                 | HL08 CIVC+C                      | LOCI-OX Yes                      | AmBeel    | 1000 0.      | 0095 0.1    | 99          |                   |         |                |                 |           |          |            |             |           |
| RR PICZNEDI       | 2093.7   | 2305.8    | 0.71    | 0.87        | 0.82       | 4.97       | 6.85     | 53.57 Fe     |        | Ye        | 8.62      | 8.1       | 8.62 P-62e      | 13.87       | 13.87      | 12.66      | 90         | 90       | 120 2110 150-17-                   | fumatati (Tumar                     | THEOD CIVELO                     | A OCI+OV Yes                     | Amilieet  | 1000 0       | 0095 0.1    | 99          |                   |         |                |                 |           |          |            |             |           |
| 20 CMQ/194        | 3799.2   | 2013      | 0.85    | 152         | 0.56       | 6.09       | 0.60     | 63.21 C4     |        | 70        | 0 20.26   | 8.97      | 15.77 Pd-385    | 40.94       | 48.94      | 40.94      | - 100      | - 90     | 30 117225 100-97                   | 0 73/2/146 1.73/2/1                 | 90.22 CIN2C                      | N CINZCK Yes                     | Allanes   | 5000 0       | 0142 0.1    | 19          |                   |         |                |                 |           |          |            |             |           |
| 24 EKOPE          | 1040     | 2002.7    | 0.61    | 0.51        | 122        | 3.09       | 4.05     | 50.78 51     | 04     | 10        | 5 6.82    | 5.54      | 6.81 P43252     | 17,49       | 17.49      | 10.21      | 90         | - 90     | 90 4044 121-95                     | Denzene [1]3-Ere                    | REN CHICK                        | OCHOR Yes                        | Allahos   | 5000         | 100 0.      | 55          |                   |         |                |                 |           |          |            |             |           |
| as perman         | 10,00.0  | 2032.7    | 0.6.7   | 0.11        | 100        | 3.65       | 2.00     | 52.49 DA     | 0.0    |           |           | 2.5       | SORE D.O.       | 22.4        | 1000       | 70.00      |            |          | 10 4223 K1-35                      | berners [ 13-me                     | NEW CRUCE                        | COLLEGE Ver                      | Alladara  | 5000         |             |             |                   |         |                |                 |           |          |            |             |           |
| an MARIA          | 1178.6   | 2784.0    | 0.71    | 0.04        | 0.04       |            | 100      | 62.49 0.0    |        | 10        | 1 1.10    | 8.00      | 6.44 PO1101     | 47.4        |            | 10.07      |            |          | 80 10770 School                    | bennere [ Loue                      | NEH CHICK                        | COLON Ves                        | Allahas   | 5000         | 0.040 0.0   |             |                   |         |                |                 |           |          |            |             |           |
| In FUVCIC lambdad | 0162-0   | 2494.6    | 0.75    | 0.84        | 0.92       | 4.5        |          | 6164 70      |        | 94        | 12.00     | 7.14      | 10 DE (0.01)    | 16.17       | 05.17      | 26.12      | 90         |          | 90 10227 100.21                    | h 14.Benz C'Esnas                   | NET CH-CC                        | ODI+ON Ves                       | Amilland  | 1000 0       | 0745 01     | 10          |                   |         |                |                 |           |          |            |             |           |
| 28 KUNFIEL ML-DOE | 2108     | 2297.7    | 0.74    | 102         | 0.72       | 6.54       | 6.82     | 52.74 Fe     |        |           | 3.09      | 0.3       | 3.09 PESime     | 14.42       | 14.42      | 17.3       | 90         | 90       | 120 2014 4 100-25                  | 0 14-Benz C'Benze                   | HED CHACE                        | OCI+Oh Yes                       | Amiliant  | 1000 0       | 0275 0.1    | Wi I        |                   |         |                |                 |           |          |            |             |           |
| 30 LAGVER         | 2762.2   | 2238.7    | 0.64    | 0.65        | 0.99       | 4.10       | 4.95     | 515 Co       |        | Ye        | c 7.33    | 5.01      | 7.33 C24        | 33.23       | 9.73       | 10.29      | 90         | 93.68    | 90 5238.6 100-25                   | 0 14-Benz l'Benze                   | KEID CH-CC                       | + OCI+Ox Yes                     | Amilieec  | 1010 0       | 0215 01     | 15          |                   |         |                |                 |           |          |            |             |           |
| as PICTIG         | 2227.9   | 2131.7    | 0.65    | 0.68        | 0.96       | 4.12       | 6.02     | 50.52 Zn     |        | 94        | 7.19      | 5.2       | 7.17 C24e       | 21.22       | 9.77       | 18.22      | 90         | 93.60    | 90 5998.9 100.25                   | 14.Banz C'Elenza                    | NED CH-CC                        | + OCI+Oh Yes                     | Amiliani  | 1000 0       | 02% 01      | 15          |                   |         |                |                 |           |          |            |             |           |
| 52 PEZIEA         | 9530.9   | 2266.2    | 0.76    | 1.10        | 0.64       | 6.76       | 7.55     | 52.41 Cr     |        | ¥e.       | 10.50     | 9.9       | 10.50 P63/mm    | 15.63       | 15.60      | 15.96      | 90         | 90       | \$20 2275 100-25                   | 0 14-Benz ("Benze                   | 4 16.13 Ct+CC                    | OCI+Ok Yes                       | AmBeet    | 1000 0       | 02% 0.1     | 95          |                   |         |                |                 |           |          |            |             |           |
| 00 SEFEOV         | 2419.2   | 2400.5    | 0.67    | 0.65        | 100        | 4.37       | 5.15     | 55.71 Zn     |        | Ye        | 5.66      | 5.15      | 5.65 P212121    | 10.3        | 11.82      | 20.37      | 90         | 90       | 90 2400.0 100-25                   | 0 14-Benz ("Benze                   | < N6.13 C1+CC                    | + OCI+Ox Yes                     | AmBrei    | 1000 0       | 0275 0.1    | 16          |                   |         |                |                 |           |          |            |             |           |
| 34 TAGYALCPM-20   | 3328.7   | 2474.9    | 0.60    | 0.95        | 0.74       | 5.51       | 6.64     | 62.91 Mg     |        | Ye        | £ 7.19    | 5.47      | 7.19 P3c1       | 22.81       | 22.81      | 96.81      | 90         | 90       | 120 7674.6 103-25                  | 0 14-Benz ["Benze                   | < H6.13 CI +CC                   | + OCI+Ox Yes                     | AmBee:    | 1000 0       | 0215 0.1    | 95          |                   |         |                |                 |           |          |            |             |           |
| 35 UFENAV         | 4090.6   | 3008.4    | 0.74    | 0.98        | 0.75       | 6.45       | 7.57     | 61.01 Zn     |        | Ye        | 4 7.29    | 5.26      | 7.ff Co         | 03.24       | 9.72       | 10.42      | 90         | 90.54    | 90 5950.9 100-25                   | 0 14-Benz ("Benze                   | #6.13 Ctj+CC                     | OC(+O): Yes                      | AmDrei    | 1000 0       | 02% 0.      | 95          |                   |         |                |                 |           |          |            |             |           |
| 06 CLAYON         | N62.6    | 2299.4    | 0.69    | 0.40        | 144        | 3.41       | 3.99     | 69.02 Cd     |        | Ye        | 5.67      | 4.4       | 5.67 P212121    | 8.37        | 8.0        | 20.95      | 90         | 90       | 90 178.2 07-69-                    | <ul> <li>(Sartaa)-LJanab</li> </ul> | < 150.1 C[[C89                   | HO[CBH] Yes                      | ABCR      | 25000 1      | 1029 0.1    | 33          |                   |         |                |                 |           |          |            |             |           |
| ST OYEFER         | 4736.8   | 2199.2    | 0.94    | 102         | 0.45       | 7.23       | 10.23    | 52.68 Cr     | Cu     | Ye        | E H.33    | 11.45     | H.01 P63m       | 20.77       | 20.77      | 2105       | - 90       | 90       | 120 7866.9 59-67-                  | s pyridne- ["pyrdn                  | 6 15315 CICPO                    | TOCI+OX Yes                      | AmBrec    | 500 0.       | 0292: 0.1   | 10          |                   |         |                |                 |           |          |            |             |           |
| 38 OVERCE         | 2942.9   | 2225.9    | 0.73    | 0.92        | 0.79       | 5.03       | 6.33     | 53.4 C/      | Cd     | 74        | 8 9.45    | 7.58      | 9.45 P-4250     | 20.61       | 20.61      | 22.16      | 90         | 90       | 90 94918 59-67-                    | pyridne- ("pyrdin                   | 4 123.12 CICS-C                  | OCI+OX Yes                       | Amiliaec  | 510 0        | 0292 0.1    | 98          |                   |         |                |                 |           |          |            |             |           |
| as concent        | 1102.3   | 2000.2    | 0.69    | 0.40        | 140        | 3.84       | 14       | 62.5 0.6     |        | 10        | 8 872     |           | S.F.C. Pretent  | 0.91        | 10.00      | 2103       |            | - 22     | 30 1736 4 133-37                   | a zocanji rama                      | e meno Ciroli                    | OCIUC YES                        | Cattory   | 10000 0      | 0.001       |             |                   |         |                |                 |           |          |            |             |           |
| at FOutsta        | MOTO     | 2033.2    | 0.67    | 0.55        | 1.04       | 245        | 4.00     | BLOT CO      | 70     |           | 8.47      |           | 8 TH 874 The    | 40.70       | 80.71      | 10.745     |            | - 22     | 00 4117 0 00 0F                    | 1245 B Cheson                       | TRAIN CANCE                      | OCLOS Ver                        | AmBrei    | 1010 0       | 0000 01     | 8           |                   |         |                |                 |           |          |            |             |           |
| 42 LABPEC         | 144.3    | 2022.1    | 0.62    | 0.51        | 123        | 3.98       | 4.00     | 5142 20      | en.    |           | 7.02      | 4.82      | 6.99 Phoa       | 11.05       | 10.0       | 22.94      | 90         | 90       | 50 82187 69.05                     | 1245.B ("hence                      | 254 16 CallCo                    | + OCI+OX Yes                     | Amiliani  | 1010 0       | 0115 0.1    |             |                   |         |                |                 |           |          |            |             |           |
| 45 WONRAD         | 1121.0   | 25511     | 0.57    | 0.2         | 19         | 2.71       | 3.09     | 6054 C4      |        |           | 8.27      | 4.23      | 4.8 Ama2        | 12.75       | 15.60      | 15.44      | 90         | 90       | 90 2917 03-05-                     | 1245.8 Chenne                       | 254 16 C+ 9CH                    | 1 OCI+Ok Ver                     | Amilian   | 1010 0       | 0716 01     | 10          |                   |         |                |                 |           |          |            |             |           |
| 44 JOYFOD         | 2292.3   | 2309      | 0.71    | 0.71        | 1.01       | 42         | 5.85     | 64.92 Cu     |        | Ye        | 6.50      | 6.27      | 6.06 P285       | 12.69       | 7.8        | 17.23      | 90         | 23.06    | 90 1029.7 298-80                   | C 12.4-miai ["12.4-m                | 62.06 NRI-C                      | N officially Yes                 | Cathors   | 10000 0.     | 0602        |             |                   |         |                |                 |           |          |            |             |           |
| 45 NEGZUV         | 15.67    | 2102.0    | 0.62    | 0.45        | 1.41       | 3.22       | 0.77     | 65.00 V      | Zn     | Ye        | 6.53      | 5.76      | 6.53 Phon       | 24.60       | 10.04      | 17.3       | 90         | 90       | 90 7701.3 288-88                   | C 12.4-min [12.4-m                  | 68.06 MIN-C                      | A officially Yes                 | Cathors   | 10000 0.     | 0602        |             |                   |         |                |                 |           |          |            |             |           |
| 45 VOHDON         | 1773.3   | 2534.1    | 0.7     | 0.49        | 142        | 3.85       | 4.15     | 6182 Cd      |        | Ye        | \$ 5.72   | 4.44      | 5.72 P212121    | 8.41        | 9.81       | 2102       | 90         | 90       | 90 1733.3 147-75                   | 7 (25,35)-: ["D-Tar                 | 150:09 C(=O))                    | 0 O[C@@ Yes                      | Cattors   | 10000 0      | 0413        |             |                   |         |                |                 |           |          |            |             |           |
| AT IGAGUU         | 0427.9   | 2294.4    | 0.77    | 121         | 0.63       | 5.00       | 7.71     | 62.86 Cr     | Cu     | Ye        | s N.25    | 12.97     | 16.25 (P63/mol  | 29.72       | 29.72      | 26.29      | (90)       | 90       | 120 20115 150-13                   | 0 4-amino ["4-amia                  | 137.15 NCI-C                     | C OCI+Ok Yes                     | Gleenhar  | 1000 0       | 05% 0.1     | 99          |                   |         |                |                 |           |          |            |             |           |
| 48 INEVAJ polyMOI | 0493.0   | 2372.7    | 0.78    | 1.21        | 0.64       | 5.96       | 7.77     | 54.12 Cu     |        |           | £ 13.76   | 6.60      | 53.76 Himmm     | 26.22       | 28.22      | 44.81      | (90)       | 90       | 90 20801 99-214                    | 6-amino [16-amia                    | 18115 NC+IC                      | <ul> <li>Noloc(or Yes</li> </ul> | Carbosy   | 10000 0      | 0613        |             |                   |         |                |                 |           |          |            |             |           |
| 45 QIVGES         | 3529.7   | 2658.6    | 0.68    | 0.8         | 0.85       | 5.27       | 6.21     | 56.16 Cu     |        | Ye        | 8 6.44    | 4.4       | 6.26 P2We       | 22.55       | 11.46      | 21.06      | 90 1       | 05.65    | 90 5442 1453-8                     | 2- pyridine- ['Isonic               | 122.10 C(C+C                     | If NC(+O): Yes                   | Hotel Ha  | 10000 0      | 0671        |             |                   |         |                |                 |           |          |            |             |           |
| 10 PIOCZAM        | 2064     | 2335      | 0.64    | 0.57        | 1.0        | 3.92       | 4.61     | 54.7 Cd      |        | Ye        | 5.60      | 4.29      | 5.45 P296       | 862         | 21.12      | 13.75      | 90         | 9113     | 90 2670.5 1453-0                   | 2- pyridne- ["Isonio                | < 122.13 C(C1+C                  | I NCI+Ok Yes                     | Helei Hit | 10000 0      | 0671        |             |                   |         |                |                 |           |          |            |             |           |
| 51 XEYMAR         | 166.9    | 2239.5    | 0.66    | 0.49        | 124        | 3,41       | 4.01     | 56.14 Mn     | CU     | Ye        | 6.22      | 4.79      | 5.73 P2No       | 10          | 21.12      | 11.96      | 90         | 93.34    | 30 68322 1453-8                    | 2 pyridine- ["Isonio                | 122.13 C(C)+C                    | R NCI+OX Yes                     | Hotel Ha  | 10000 0      | 0671        |             |                   |         |                |                 |           |          |            |             |           |
| S2 GOUVAB         | 1973.1   | 2097      | 0.63    | 0.6         | 106        | 3.85       | 4.55     | 50.71 Zh     |        | 74        | \$ 4.95   | 4.07      | 4.96 1-420      | 10.25       | 16.36      | 7.56       | 90         | 90       | 90 21/2.7 504-17                   | e 5-animi [5-ino                    | E 144.16 NIL[+0                  | DICILC Yes                       | Chemes    | 1000 0.      | 0643 0.     | 98          |                   |         |                |                 |           |          |            |             |           |
| SO GLASSEP        | K167.4   | 2105.4    | 0.62    | 0.54        | 100        |            | 10       | Page Min     |        | Ye        | 4.6       | 4.17      | + 00 1-42d      |             | 17.00      | 1.67       |            |          | 20 x240.0 504-17                   | o commit 2-mag                      | E PREMI ANCLUS                   | DICKLE YPE                       | Chemes    | and 0.       | 0.41 0.1    |             |                   |         |                |                 |           |          |            |             |           |
| IS ACIDOE MORIC   | 1173.9   | 2263      | 0.64    | 0.00        | 11         | 3.00       | 144      | 8142 7n      |        | Ye        | 4,60      | 7.05      | 8 10 1428       | 10.59       | 10.00      | 17.03      | 90         |          | 90 203.6 504-17                    | C 135 Ber C 135.0                   | E 200 M CHACK                    | I DOLLE YES                      | AmBaar    | 1010 0       | Dalla 01    | 20          |                   |         |                |                 |           |          |            |             |           |
| TE ACADER         | 91657    | 2260      | 0.69    | 049         |            | 4.90       | 6.07     | 6129 70      |        |           | 10.92     | 0.00      | 7.90 D.sm       | 44.67       | 15.74      | 03.0       | 90         |          | 90 05000 554.00                    | (125.Ber (125.0                     | 2 200 M CHUCC                    | COLON Yes                        | AmBrei    | 1010 0       | 0000 01     | 20          |                   |         |                |                 |           |          |            |             |           |
| TT DCCPA HOURT.   | 2370.6   | 2305.3    | 0.72    | 0.82        | 0.09       | 4.35       | 5.54     | 62.07 Cu     |        | V.        | 13.15     | 6.66      | 13.13 Fm-3e     | 62.53       | 62.51      | 52.51      | 90         | 90       | 10 144708 154-95                   | C135-Ber (*135.0                    | 230.14 CB+CC                     | OCI+ON Yes                       | Ardlen    | 1000 0       | 0000 0.1    | NA NA       |                   |         |                |                 |           |          |            |             |           |
| M CEHAD           | 25593.2  | 2217.9    | 0.74    | 0.16        | 0.05       | 4.6        | 6.85     | 53.09 Zh     |        | Ye        | 6 50.21   | 5.99      | 10.09 P41212    | 11.69       | 12.69      | 50.66      | 90         | 90       | 90 9499.3 574.95                   | C 135-Ber (*135-0                   | 1 21014 CH-CE                    | OCI+OX Yes                       | Amilieed  | 1010 0       | 0909 01     | 12          |                   |         |                |                 |           |          |            |             |           |
| 55 CIFMEL         | 2603.2   | 2748.4    | 0.75    | 0.98        | 0.78       | 5.06       | 7.08     | 57.99 Co     |        | 4         | 6 8.24    | 5.76      | 8.24 P213       | 14.65       | 14.65      | 14.65      | 90         | 90       | 90 2145.4 554.95                   | C 135-Ber ["135.n                   | 4 21014 CH-CC                    | OCI+Ox Yes                       | AmBeel    | 1000 0       | 0909 01     | 10          |                   |         |                |                 |           |          |            |             |           |
| 80 DEPHOM         | 2090     | 2294.0    | 0.61    | 0.54        | 100        | 3.96       | 4.62     | 52.45 Mn     |        | Ye.       | \$ 5.87   | 4.69      | 5.05 P2M        | 17.00       | 11.0       | 10.05      | 90 1       | 18.25    | 90 25610 554-95                    | C 13.5-Ber (*13.5-6                 | 4 210.14 CE+CC                   | OCI+Oh Yes                       | AmBeec    | 1000 0.      | 0909 0.1    | 10          |                   |         |                |                 |           |          |            |             |           |
| 61 DIHVE HKUST-   | 2305.0   | 2038.2    | 0.72    | 0.81        | 0.08       | 4.23       | 5.45     | 60.92 Cu     |        | Ye        | 8 13.29   | 6.89      | 13.27 Fm-3m     | 26.3        | 26.0       | 26.3       | 90         | 90       | 80 10199 554-95                    | -C 13.5-Ber ["13.5-0                | 1 210.14 C1 +CC                  | OCI-Ox Yes                       | AmBrei    | 1000 0.      | 0909 0.1    | 98          |                   |         |                |                 |           |          |            |             |           |
| 12 DIHVECHKUST-   | 2377.9   | 2096.7    | 0.71    | 0.81        | 0.88       | 4.32       | 6.52     | 51.48 Cu     |        | Ye        | £ 10.18   | 6.64      | 13.17 Fm-3m     | 28.32       | 26.72      | 28.22      | 90         | 90       | 90 18226 554-95                    | C 13,5-Ber ["13,5-0                 | 210.14 CII+CO                    | OCI+OX Yes                       | AmBeec    | 1000 0.      | 0909 0.1    | 18          |                   |         |                |                 |           |          |            |             |           |
| 65 DUPYER         | 2723.9   | 2168.1    | 0.72    | 0.92        | 0.8        | 4.76       | 6.13     | 52.01 Zn     |        | Ye        | 9.90      | 6.47      | 9.92 P2M        | 16.6        | 25.92      | 17.44      | 90 1       | 07.38    | 90 6212.9 554-95                   | C 135-Ber ["135-0                   | 210.14 Ctj+CC                    | OCI+OX Yes                       | AmBeet    | 1000 0.      | 0909 0.1    | 98          |                   |         |                |                 |           |          |            |             |           |
| 64 EGATAI         | 2528.7   | 2426.3    | 0.7     | 0.73        | 0.96       | 4.51       | 5.40     | 55.09 Co     | Zn     | Ye        | s 7.26    | 4.31      | 7.26 P213       | 14.15       | 14.15      | 94.15      | 90         | 90       | 90 2024.4 554-95                   | -C 13.5-Ber ["13.5-h                | 1 210.14 Cti+CC                  | ( OC(+O)x Yes                    | AmBeet    | 1000 0.      | 0909 0.1    | 90          |                   |         |                |                 |           |          |            |             |           |
| #5 EXCENSION.     |          |           |         |             |            |            |          |              |        |           |           |           |                 |             |            |            |            |          |                                    |                                     |                                  |                                  |           |              |             |             |                   |         |                |                 |           |          |            |             |           |